Skip to main content
Ctrl+K
GPflux 0.1.0 documentation - Home

Site Navigation

  • GPflux
  • Benchmarks
  • Tutorials
  • API Reference
  • GitHub

Site Navigation

  • GPflux
  • Benchmarks
  • Tutorials
  • API Reference
  • GitHub

Section Navigation

Introductory

  • Introduction to GPflux
  • Why GPflux is a modern (deep) GP library
  • Deep Gaussian processes with Latent Variables

Advanced

  • Deep GP samples
  • Hybrid Deep GP models: combining GP and Neural Network layers

Sampling

  • Efficient sampling with Gaussian processes and Random Fourier Features
  • Weight Space Approximation with Random Fourier Features
  • Efficient Posterior Gaussian Process Sampling
  • Tutorials

Tutorials#

Introductory

  • Introduction to GPflux
  • Why GPflux is a modern (deep) GP library
  • Deep Gaussian processes with Latent Variables

Advanced

  • Deep GP samples
  • Hybrid Deep GP models: combining GP and Neural Network layers

Sampling

  • Efficient sampling with Gaussian processes and Random Fourier Features
  • Weight Space Approximation with Random Fourier Features
  • Efficient Posterior Gaussian Process Sampling

© Copyright Copyright 2021 The GPflux Contributors Licensed under the Apache License, Version 2.0 .

Created using Sphinx 7.1.2.

Built with the PyData Sphinx Theme 0.14.4.