markovflow
API reference documentation for the Markovflow package.
Markovflow includes ready-to-use GP models for classification and regression.
ready-to-use GP models
If you want to create your own model, you must implement either the MarkovFlowModel or the MarkovFlowSparseModel base class.
MarkovFlowModel
MarkovFlowSparseModel
markovflow.kernels
markovflow.kernels.constant
markovflow.kernels.kernel
markovflow.kernels.latent_exp_generated
markovflow.kernels.matern
markovflow.kernels.periodic
markovflow.kernels.piecewise_stationary
markovflow.kernels.sde_kernel
markovflow.likelihoods
markovflow.likelihoods.likelihoods
markovflow.likelihoods.multivariate_gaussian
markovflow.likelihoods.mutlistage_likelihood
markovflow.models
markovflow.models.gaussian_process_regression
markovflow.models.iwvi
markovflow.models.models
markovflow.models.pep
markovflow.models.sparse_pep
markovflow.models.sparse_variational
markovflow.models.sparse_variational_cvi
markovflow.models.spatio_temporal_variational
markovflow.models.variational
markovflow.models.variational_cvi
markovflow.sde
markovflow.sde.drift
markovflow.sde.sde_utils
markovflow.base
markovflow.block_tri_diag
markovflow.conditionals
markovflow.emission_model
markovflow.gauss_markov
markovflow.kalman_filter
markovflow.mean_function
markovflow.posterior
markovflow.ssm_gaussian_transformations
markovflow.ssm_natgrad
markovflow.state_space_model
markovflow.utils