Markovflow
Tutorials
API Reference
Basic regression using the GPR model
Choosing and combining kernels
Basic classification using the VGP model
Basic classification using the PEP model
Basic classification using the CVIGaussianProcess model
Basic classification using the SPEP model
Basic classification using the SparseCVIGaussianProcess model
Classification using importance-weighted SGPR
Factor Analysis
Stacked kernels and multiple outputs
Regression using a piecewise kernel
Demo of MultiStageLikelihood with plain SVGP model
Tutorials
ΒΆ
Introductory
Basic regression using the GPR model
Choosing and combining kernels
Approximate inference
Basic classification using the VGP model
Basic classification using the PEP model
Basic classification using the CVIGaussianProcess model
Basic classification using the SPEP model
Basic classification using the SparseCVIGaussianProcess model
Classification using importance-weighted SGPR
Special kernels and likelihoods
Factor Analysis
Stacked kernels and multiple outputs
Regression using a piecewise kernel
Demo of MultiStageLikelihood with plain SVGP model