Source code for gpflux.callbacks

#
# Copyright (c) 2021 The GPflux Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
r"""
This module implements a callback that enables GPflow's `gpflow.monitor.ModelToTensorBoard` to
integrate with Keras's `tf.keras.Model`\ 's `fit
<https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit>`_ method.
"""
import re
from typing import Any, Dict, List, Mapping, Optional, Union

import gpflow
from gpflow.keras import tf_keras
from gpflow.utilities import parameter_dict

__all__ = ["TensorBoard"]


[docs]class TensorBoard(tf_keras.callbacks.TensorBoard): """ This class is a thin wrapper around a `tf.keras.callbacks.TensorBoard` callback that also calls GPflow's `gpflow.monitor.ModelToTensorBoard` monitoring task. """
[docs] log_dir: str
""" The path of the directory to which to save the log files to be read by TensorBoard. Files are saved in ``log_dir / "train"``, following the Keras convention. """
[docs] keywords_to_monitor: List[str]
""" Parameters whose name match a keyword in the *keywords_to_monitor* list will be added to the TensorBoard. """
[docs] update_freq: Union[int, str]
r""" Either an integer or ``"epoch"``. If using an integer *n*, write losses/metrics/parameters at every *n*\ th batch; when using ``"epoch"``, write them at the end of each epoch. Note that writing too frequently to TensorBoard can slow down the training. """ def __init__( self, log_dir: str = "logs", *, keywords_to_monitor: List[str] = [ "kernel", "mean_function", "likelihood", ], max_size: int = 3, histogram_freq: int = 0, write_graph: bool = True, write_images: bool = False, update_freq: Union[int, str] = "epoch", profile_batch: int = 2, embeddings_freq: int = 0, embeddings_metadata: Optional[Dict] = None, ): """ :param log_dir: The path of the directory to which to save the log files to be read by TensorBoard. :param keywords_to_monitor: A list of keywords to monitor. If the parameter's name includes any of the keywords specified, it will be added to the TensorBoard. :param max_size: The maximum size of arrays (inclusive) for which each element is written independently as a scalar to the TensorBoard. For information on all other arguments, see TensorFlow's `TensorBoard callback docs <https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard>`_. """ super().__init__( log_dir=log_dir, histogram_freq=histogram_freq, write_graph=write_graph, write_images=write_images, update_freq=update_freq, profile_batch=profile_batch, embeddings_freq=embeddings_freq, embeddings_metadata=embeddings_metadata, ) self.keywords_to_monitor = keywords_to_monitor self.max_size = max_size
[docs] def set_model(self, model: tf_keras.Model) -> None: """ Set the model (extends the Keras `set_model <https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard#set_model>`_ method). This method initialises :class:`KerasModelToTensorBoard` and mimics Keras's TensorBoard callback in writing the summary logs to :attr:`log_dir` / "train". """ super().set_model(model) self.monitor = KerasModelToTensorBoard( log_dir=self.log_dir + "/train", model=self.model, max_size=self.max_size, keywords_to_monitor=list(self.keywords_to_monitor), left_strip_character="._", )
[docs] def on_train_batch_end(self, batch: int, logs: Optional[Mapping] = None) -> None: """ Write to TensorBoard if :attr:`update_freq` is an integer. :param batch: The index of the batch within the current epoch. :param logs: The metric results for this batch. """ super().on_train_batch_end(batch, logs=logs) if self.update_freq == "epoch": # We only write at epoch ends return if isinstance(self.update_freq, int) and batch % self.update_freq == 0: self.monitor(batch)
[docs] def on_epoch_end(self, epoch: int, logs: Optional[Mapping] = None) -> None: """Write to TensorBoard if :attr:`update_freq` equals ``"epoch"``.""" super().on_epoch_end(epoch, logs=logs) if self.update_freq == "epoch": self.monitor(epoch)
class KerasModelToTensorBoard(gpflow.monitor.ModelToTensorBoard): """ This class overwrites the :meth:`run` method to deduplicate parameters in :attr:`parameter_dict`. """ # Keras automatically saves all layers in the `self._self_tracked_trackables` # attribute of the model, which is a list of sub-modules. _LAYER_PARAMETER_REGEXP = re.compile(r"\._self_tracked_trackables\[\d+\]\.") def _parameter_of_interest(self, match: str) -> bool: return self._LAYER_PARAMETER_REGEXP.match(match) is not None def run(self, **unused_kwargs: Any) -> None: """Write the model's parameters to TensorBoard.""" for name, parameter in parameter_dict(self.model).items(): if not self._parameter_of_interest(name): # skip parameters continue # check if the parameter name matches any of the specified keywords if self.summarize_all or any((keyword in name) for keyword in self.keywords_to_monitor): # keys are sometimes prepended with a character, which we strip name = name.lstrip(self.left_strip_character) self._summarize_parameter(name, parameter)